Baldan, M., Ludl, P. O., Süss, P., Schack, D., Schmidt, R., & Bortz, M. (2023). Real‐Time Interactive Navigation on Input‐Output Data Sets in Chemical Processes. Chemie Ingenieur Technik, 95(7), 1028–1040.

Bordas, B., Kurt, K., Bamberg, A., & Engell, S. (2023). Gray‐Box Modeling of the Molecular Weight Distribution in a Batch Polymerization Reactor. Chemie Ingenieur Technik, 95(7), 1104–1113.

Bortz, M., Dadhe, K., Engell, S., Gepert, V., Kockmann, N., Müller-Pfefferkorn, R., Schindler, T., & Urbas, L. (2023). AI in Process Industries – Current Status and Future Prospects. Chemie Ingenieur Technik, 95(7), 975–988.

Brand-Rihm, G. B., Schueler, M., Nentwich, C., Esche, E., & Repke, J.-U. (2023). Adaptation of Dynamic Data‐Driven Models for Real‐Time Applications: From Simulated to Real Batch Distillation Trajectories by Transfer Learning. Chemie Ingenieur Technik, 95(7), 1125–1133.

Brand-Rihm, G., Esche, E., & Repke, J.-U. (2023). Efficient dynamic sampling of batch processes through operation recipes. Computers & Chemical Engineering, 108433.

Dathatri, A. G., Strem, N., & Klöpper, B. (2023). Combining Representation Learning and Active Learning for Applications in Process Manufacturing. Chemie Ingenieur Technik, 95(7), 1018–1027.

Damay, J., Ryzhakov, G., Jirasek, F., Hasse, H., Oseledets, I., & Bortz, M. (2023). Predicting Temperature‐Dependent Activity Coefficients at Infinite Dilution Using Tensor Completion. Chemie Ingenieur Technik, 95(7), 1061–1069.

Ehlhardt, J., Ahmad, A., Wolf, I., & Engell, S. (2023). Real‐Time Optimization Using Machine Learning Models Applied to the 4,4′‐Diphenylmethane Diisocyanate Production Process. Chemie Ingenieur Technik, 95(7), 1096–1103.

Elsheikh, M., Ortmanns, Y., Hecht, F., Roßmann, V., Krämer, S., & Engell, S. (2023). An Approach to Dependable Hybrid Modeling with Application to an Industrial Distillation Column. In Computer Aided Chemical Engineering. 33rd European Symposium on Computer Aided Process Engineering (Vol. 52, pp. 1753–1758). Elsevier.

Elsheikh, M., Ortmanns, Y., Hecht, F., Roßmann, V., Krämer, S. & Engell, S. (2023, July 9-14). Model Predictive Control of an Industrial Distillation Column Based on a Hybrid Model: Adapting the Domain of Validity. Proc. 22nd IFAC- World Congress, Yokohama.

Elsheikh, M., & Engell, S. (2023, August 22–25). Learning-Based Predictive Control Using a Hybrid Model with Adaptive Domain of Validity. In 2023 27th International Conference on Methods and Models in Automation and Robotics (MMAR) (pp. 127–132). IEEE.

Elsheikh, M., Ortmanns, Y., Hecht, F., Roßmann, V., Krämer, S. and Engell, S. (2023), Control of an Industrial Distillation Column Using a Hybrid Model with Adaptation of the Range of Validity and an ANN-based Soft Sensor. Chemie Ingenieur Technik, 95: 1114-1124.

Franks, B. J., Anders, M., Kloft, M., & Schweitzer, P. (2023). A Systematic Approach to Universal Random Features in Graph Neural Networks. Transactions on Machine Learning Research (TMLR).

Gedda, R., Beilina, L., & Tan, R. (2023). Change Point Detection for Process Data Analytics Applied to a Multiphase Flow Facility. Computer Modeling in Engineering & Sciences, 134(3), 1737–1759.

Gopa, K. R., Wenzel, T., Jena, S., Assawajaruwan, S., Khaydarov, V., & Urbas, L. (2023). Developing Cole-Cole model for Bacillus subtilis fermentation. In Computer Aided Chemical Engineering. 33rd European Symposium on Computer Aided Process Engineering (Vol. 52, pp. 2711–2716). Elsevier.

Gärtler, M., Hollender, M., Klöpper, B., Maczey, S., Tan, R., Song, C., Bähner, F. D., Krämer, S., Just, G., Khaydarov, V., Urbas, L., & Gedda, R. (2023). Machine Learning Approaches for Phase Identification Using Process Variables in Batch Processes. Chemie Ingenieur Technik, 95(7), 989–1002.

Hubert, S., Meintschel, J., Bleidorn, D., Ortmanns, Y., & Wallrath, R. (2023). Production Scheduling Using Deep Reinforcement Learning and Discrete Event Simulation. Chemie Ingenieur Technik, 95(7), 1003–1011.

Hartung, F., Franks, B. J., Michels, T., Wagner, D., Liznerski, P., Reithermann, S., Fellenz, S., Jirasek, F., Rudolph, M., Neider, D., Leitte, H., Song, C., Kloepper, B., Mandt, S., Bortz, M., Burger, J., Hasse, H., & Kloft, M. (2023). Deep Anomaly Detection on Tennessee Eastman Process Data. Chemie Ingenieur Technik, 95(7), 1077–1082.

Jirasek, F., Hayer, N., Abbas, R., Schmid, B., & Hasse, H. (2023). Prediction of parameters of group contribution models of mixtures by matrix completion. Physical Chemistry Chemical Physics: PCCP, 25(2), 1054–1062.

Jirasek, F., & Hasse, H. (2023). Combining Machine Learning with Physical Knowledge in Thermodynamic Modeling of Fluid Mixtures. Annual Review of Chemical and Biomolecular Engineering, 14, 31–51.

Khaydarov, V., Becker, M. P., & Urbas, L. (2023). Image‐Based Flow Regime Recognition in Aerated Stirred Tanks Using Deep Transfer Learning. Chemie Ingenieur Technik, 95(7), 1172–1179.

Klose, A., Wagner-Stürz, D., Neuendorf, L., Oeing, J., Khaydarov, V., Schleehahn, M., Kockmann, N., & Urbas, L. (2023). Automated Evaluation of Biochemical Plant KPIs based on DEXPI Information. Chemie Ingenieur Technik, 95(7), 1165–1171.

Kockmann, N., Schindler, T., & Urbas, L. (2023). AI in Process Industries – Incubator Labs and Use Cases. Chemie Ingenieur Technik, 95(7), 963.

Lammers, S., & Lasch, A. (2023). Linguistic Framing of Artificial Intelligence: What Language to Use When Talking about Artificial Intelligence. Chemie Ingenieur Technik, 95(7), 1012–1017.

Ledent, A., Alves, R., & Kloft, M. (2023). Orthogonal Inductive Matrix Completion. IEEE Transactions on Neural Networks and Learning Systems, 34(5), 2259–2270.

Neuendorf, L., Hammal, Z., Fricke, A., & Kockmann, N. (2023). AI‐Based Supervision for a Stirred Extraction Column Assisted with Population Balance‐Based Simulation. Chemie Ingenieur Technik, 95(7), 1134–1145.

Neuendorf, L., Höving, S., Bennemann, L., & Kockmann, N. (2023). Detecting Crystals in Suspensions: Convolutional Neural Networks vs. Gravity‐Based Approach for Size Distribution Detection. Chemie Ingenieur Technik, 95(7), 1146–1153.

Neuendorf, L. M., Khaydarov, V., Schlander, C., Kock, T., Fischer, J., Urbas, L., & Kockmann, N. (2023). Artificial Intelligence‐based Module Type Package‐compatible Smart Sensors in the Process Industry. Chemie Ingenieur Technik, Article cite.202300047. Advance online publication.

Sherpa, L., Müller-Pfefferkorn, R., Tolksdorf, G., Khaydarov, V., Wiedau, M., & Urbas, L. (2023). ProMetaS – A Metadata Schema for Process Engineering and Industry. Chemie Ingenieur Technik, 95(7), 1041–1048.

Sherpa, L., Müller-Pfefferkorn, R., Enste, U., Tolksdorf, G., Kawohl, M., & Wiedau, M. (2023). Tool Chain to Extract and Contextualize Process Data for AI Applications. Chemie Ingenieur Technik, 95(7), 1070–1076.

Wagner, D., Michels, T., Schulz, F., Nair, A., Rudolph, M., Kloft, M. (2023). TimeSeAD: Benchmarking Deep Multivariate Time-Series Anomaly Detection. Transactions on Machine Learning Research (TMLR)

Winz, J., Assawajaruwan, S., & Engell, S. (2023). Development of a Dynamic Gray‐Box Model of a Fermentation Process for Spore Production. Chemie Ingenieur Technik, 95(7), 1154–1164.

Winz, J., Fromme, F., & Engell, S. (2023). Overcoming the modeling bottleneck: A metho-dology for dynamic gray-box modeling with optimized training data. Journal of Process Control 130, Article 103089.

[2023] [2022] [2021] [2020